Trigonometric Identities Exploring 2cos(3θ) And Sin(3θ)cos³(θ) + Cos(3θ)sin³(θ)

by ADMIN 80 views

In this article, we will delve into two intriguing trigonometric problems. First, we'll tackle the problem where given 2costheta=x+frac1x2 \\cos \\theta = x + \\frac{1}{x}, we need to find the value of 2cos3theta2 \\cos 3\\theta. Then, we'll explore the expression sin3thetacos3theta+cos3thetasin3theta\\sin 3\\theta \\cos^3 \\theta + \\cos 3\\theta \\sin^3 \\theta and simplify it using trigonometric identities. These problems not only test our understanding of trigonometric formulas but also our ability to manipulate and apply them effectively. By breaking down each problem step by step, we'll gain a deeper appreciation for the elegance and power of trigonometry.

1. Finding 2cos3theta2 \\cos 3\\theta when 2costheta=x+frac1x2 \\cos \\theta = x + \\frac{1}{x}

Understanding the Problem

The core of trigonometric identities lies in expressing trigonometric functions in different forms. This question challenges us to find an expression for 2cos3theta2 \\cos 3\\theta given that 2costheta=x+frac1x2 \\cos \\theta = x + \\frac{1}{x}. To solve this, we will utilize the triple angle formula for cosine, which states that cos3theta=4cos3theta3costheta\\cos 3\\theta = 4\\cos^3 \\theta - 3\\cos \\theta. By manipulating this formula and using the given equation, we can express 2cos3theta2 \\cos 3\\theta in terms of xx. This problem emphasizes the importance of recognizing and applying the appropriate trigonometric identities to simplify complex expressions. Understanding the interplay between different trigonometric functions allows us to solve problems efficiently and accurately.

Step-by-Step Solution

  1. Recall the triple angle formula for cosine: The triple angle formula for cosine is a fundamental identity that relates cos3theta\\cos 3\\theta to costheta\\cos \\theta. It is given by:

    cos3theta=4cos3theta3costheta\\cos 3\\theta = 4\\cos^3 \\theta - 3\\cos \\theta

    This formula is crucial for solving the problem, as it directly links the expression we want to find (2cos3theta2 \\cos 3\\theta) to costheta\\cos \\theta, which is related to xx in the given equation. Memorizing and understanding this identity is key to tackling similar trigonometric problems.

  2. Multiply both sides by 2: To find 2cos3theta2 \\cos 3\\theta, we multiply the entire equation by 2:

    2cos3theta=2(4cos3theta3costheta)=8cos3theta6costheta2\\cos 3\\theta = 2(4\\cos^3 \\theta - 3\\cos \\theta) = 8\\cos^3 \\theta - 6\\cos \\theta

    This step sets up the equation in a form that directly corresponds to the desired expression. By isolating 2cos3theta2 \\cos 3\\theta, we prepare to substitute the given expression in terms of xx.

  3. Use the given equation: We are given that 2costheta=x+frac1x2\\cos \\theta = x + \\frac{1}{x}. Thus, costheta=frac12left(x+frac1xright)\\cos \\theta = \\frac{1}{2}\\left(x + \\frac{1}{x}\\right).

    This substitution is the bridge that connects the triple angle formula to the variable xx. By expressing costheta\\cos \\theta in terms of xx, we can rewrite the entire equation in terms of xx, leading us closer to the final solution.

  4. Substitute costheta\\cos \\theta into the equation for 2cos3theta2\\cos 3\\theta:

    2cos3theta=8left[frac12left(x+frac1xright)right]36left[frac12left(x+frac1xright)right]2\\cos 3\\theta = 8\\left[\\frac{1}{2}\\left(x + \\frac{1}{x}\\right)\\right]^3 - 6\\left[\\frac{1}{2}\\left(x + \\frac{1}{x}\\right)\\right]

    This substitution replaces costheta\\cos \\theta in the equation with its equivalent expression in terms of xx. This step is crucial for expressing 2cos3theta2 \\cos 3\\theta solely in terms of xx, which is the goal of the problem.

  5. Simplify the expression: Now we simplify the expression step by step:

    2cos3theta=8left[frac18left(x+frac1xright)3right]3left(x+frac1xright)2\\cos 3\\theta = 8\\left[\\frac{1}{8}\\left(x + \\frac{1}{x}\\right)^3\\right] - 3\\left(x + \\frac{1}{x}\\right)

    2cos3theta=left(x+frac1xright)33left(x+frac1xright)2\\cos 3\\theta = \\left(x + \\frac{1}{x}\\right)^3 - 3\\left(x + \\frac{1}{x}\\right)

    This simplification involves basic algebraic manipulations. By carefully expanding and reducing the terms, we can move closer to a more concise expression for 2cos3theta2 \\cos 3\\theta.

  6. Expand left(x+frac1xright)3\\left(x + \\frac{1}{x}\\right)^3:

    left(x+frac1xright)3=x3+3x2left(frac1xright)+3xleft(frac1xright)2+frac1x3=x3+3x+frac3x+frac1x3\\left(x + \\frac{1}{x}\\right)^3 = x^3 + 3x^2\\left(\\frac{1}{x}\\right) + 3x\\left(\\frac{1}{x}\\right)^2 + \\frac{1}{x^3} = x^3 + 3x + \\frac{3}{x} + \\frac{1}{x^3}

    Expanding the cubic term is a crucial step. It allows us to break down the expression into individual terms that can be further simplified. The binomial expansion formula is essential here.

  7. Substitute the expanded form back into the equation:

    2cos3theta=left(x3+3x+frac3x+frac1x3right)3left(x+frac1xright)2\\cos 3\\theta = \\left(x^3 + 3x + \\frac{3}{x} + \\frac{1}{x^3}\\right) - 3\\left(x + \\frac{1}{x}\\right)

    This substitution brings the expanded form back into the main equation, allowing us to combine like terms and simplify the expression further. It's a strategic move to consolidate our progress.

  8. Simplify further:

    2cos3theta=x3+3x+frac3x+frac1x33xfrac3x2\\cos 3\\theta = x^3 + 3x + \\frac{3}{x} + \\frac{1}{x^3} - 3x - \\frac{3}{x}

    2cos3theta=x3+frac1x32\\cos 3\\theta = x^3 + \\frac{1}{x^3}

    The final simplification involves canceling out terms and arriving at the concise form x3+frac1x3x^3 + \\frac{1}{x^3}. This result beautifully expresses 2cos3theta2 \\cos 3\\theta in terms of xx.

Conclusion for Part 1

Therefore, if 2costheta=x+frac1x2\\cos \\theta = x + \\frac{1}{x}, then 2cos3theta=x3+frac1x32\\cos 3\\theta = x^3 + \\frac{1}{x^3}. This solution highlights the power of trigonometric identities and algebraic manipulation in simplifying complex expressions. The correct answer is option 2) x3+frac1x3x^3 + \\frac{1}{x^3}.

2. Simplifying sin3thetacos3theta+cos3thetasin3theta\\sin 3\\theta \\cos^3 \\theta + \\cos 3\\theta \\sin^3 \\theta

Understanding the Problem

This problem requires us to simplify the expression sin3thetacos3theta+cos3thetasin3theta\\sin 3\\theta \\cos^3 \\theta + \\cos 3\\theta \\sin^3 \\theta. To do this, we will need to use trigonometric identities, specifically the triple angle formulas for sine and cosine, and then factor and simplify the resulting expression. The key here is to recognize common factors and apply the identities strategically to reduce the expression to its simplest form. This type of problem tests our ability to not only recall and apply trigonometric identities but also to manipulate algebraic expressions effectively.

Step-by-Step Solution

  1. Factor out common terms: The given expression is sin3thetacos3theta+cos3thetasin3theta\\sin 3\\theta \\cos^3 \\theta + \\cos 3\\theta \\sin^3 \\theta. We can factor out sinthetacostheta\\sin \\theta \\cos \\theta from both terms:

    sin3thetacos3theta+cos3thetasin3theta=sinthetacostheta(sin2thetacos3theta+cos2thetasin3theta)\\sin 3\\theta \\cos^3 \\theta + \\cos 3\\theta \\sin^3 \\theta = \\sin \\theta \\cos \\theta(\\sin^2 \\theta \\cos 3\\theta + \\cos^2 \\theta \\sin 3\\theta)

    This factorization is a crucial step that simplifies the expression by isolating common terms. It sets the stage for applying trigonometric identities to the remaining factors.

  2. Use the triple angle formulas: Recall the triple angle formulas for sine and cosine:

    sin3theta=3sintheta4sin3theta\\sin 3\\theta = 3\\sin \\theta - 4\\sin^3 \\theta

    cos3theta=4cos3theta3costheta\\cos 3\\theta = 4\\cos^3 \\theta - 3\\cos \\theta

    These formulas are essential for breaking down sin3theta\\sin 3\\theta and cos3theta\\cos 3\\theta into expressions involving sintheta\\sin \\theta and costheta\\cos \\theta. This allows us to work towards simplifying the entire expression.

  3. Substitute the triple angle formulas: Substitute the triple angle formulas into the factored expression:

    sinthetacostheta[sin2theta(4cos3theta3costheta)+cos2theta(3sintheta4sin3theta)]\\sin \\theta \\cos \\theta [\\sin^2 \\theta (4\\cos^3 \\theta - 3\\cos \\theta) + \\cos^2 \\theta (3\\sin \\theta - 4\\sin^3 \\theta)]

    This substitution is a key step in transforming the expression into a form that can be further simplified. By replacing sin3theta\\sin 3\\theta and cos3theta\\cos 3\\theta with their respective expansions, we introduce terms that can be combined and reduced.

  4. Expand the terms: Expand the expression inside the brackets:

    sinthetacostheta[4sin2thetacos3theta3sin2thetacostheta+3cos2thetasintheta4cos2thetasin3theta]\\sin \\theta \\cos \\theta [4\\sin^2 \\theta \\cos^3 \\theta - 3\\sin^2 \\theta \\cos \\theta + 3\\cos^2 \\theta \\sin \\theta - 4\\cos^2 \\theta \\sin^3 \\theta]

    Expanding the terms allows us to see the individual components of the expression more clearly. This is a crucial step in identifying potential cancellations and simplifications.

  5. Rearrange the terms: Rearrange the terms to group similar expressions together:

    sinthetacostheta[4sin2thetacos3theta4cos2thetasin3theta3sin2thetacostheta+3cos2thetasintheta]\\sin \\theta \\cos \\theta [4\\sin^2 \\theta \\cos^3 \\theta - 4\\cos^2 \\theta \\sin^3 \\theta - 3\\sin^2 \\theta \\cos \\theta + 3\\cos^2 \\theta \\sin \\theta]

    Rearranging the terms makes it easier to identify common factors and apply further simplifications. Grouping similar terms together is a strategic approach to solving complex expressions.

  6. Factor out common factors: Factor out 4sin2thetacos2theta4\\sin^2 \\theta \\cos^2 \\theta from the first two terms and 3sinthetacostheta3\\sin \\theta \\cos \\theta from the last two terms:

    sinthetacostheta[4sin2thetacos2theta(costhetasintheta)+3sinthetacostheta(sintheta+costheta)]\\sin \\theta \\cos \\theta [4\\sin^2 \\theta \\cos^2 \\theta(\\cos \\theta - \\sin \\theta) + 3\\sin \\theta \\cos \\theta(-\\sin \\theta + \\cos \\theta)]

    This factorization step further simplifies the expression by extracting common factors. It reveals a common binomial factor that can be factored out in the next step.

  7. Factor out (costhetasintheta)(\\cos \\theta - \\sin \\theta):

    sinthetacostheta[(costhetasintheta)(4sin2thetacos2theta+3sinthetacostheta)]\\sin \\theta \\cos \\theta [(\\cos \\theta - \\sin \\theta)(4\\sin^2 \\theta \\cos^2 \\theta + 3\\sin \\theta \\cos \\theta)]

    Factoring out the common binomial (costhetasintheta)(\\cos \\theta - \\sin \\theta) is a significant step that simplifies the expression considerably. It consolidates the terms and sets up the final simplification.

  8. Factor out sinthetacostheta\\sin \\theta \\cos \\theta again:

    sinthetacostheta[(costhetasintheta)sinthetacostheta(4sinthetacostheta+3)]\\sin \\theta \\cos \\theta [(\\cos \\theta - \\sin \\theta)\\sin \\theta \\cos \\theta(4\\sin \\theta \\cos \\theta + 3)]

    This step further simplifies the expression by extracting another common factor, sinthetacostheta\\sin \\theta \\cos \\theta. It prepares the expression for the final simplification using the double angle formula for sine.

  9. Simplify the expression:

    sin2thetacos2theta(costhetasintheta)(4sinthetacostheta+3)\\sin^2 \\theta \\cos^2 \\theta (\\cos \\theta - \\sin \\theta)(4\\sin \\theta \\cos \\theta + 3)

    Now, use the identity 2sinthetacostheta=sin2theta2\\sin \\theta \\cos \\theta = \\sin 2\\theta, so sinthetacostheta=frac12sin2theta\\sin \\theta \\cos \\theta = \\frac{1}{2}\\sin 2\\theta:

    left(frac12sin2thetaright)2(costhetasintheta)(4left(frac12sin2thetaright)+3)\\left(\\frac{1}{2}\\sin 2\\theta\\right)^2 (\\cos \\theta - \\sin \\theta)(4\\left(\\frac{1}{2}\\sin 2\\theta\\right) + 3)

    frac14sin22theta(costhetasintheta)(2sin2theta+3)\\frac{1}{4}\\sin^2 2\\theta (\\cos \\theta - \\sin \\theta)(2\\sin 2\\theta + 3)

    The final simplified expression is frac14sin22theta(costhetasintheta)(2sin2theta+3)\\frac{1}{4}\\sin^2 2\\theta (\\cos \\theta - \\sin \\theta)(2\\sin 2\\theta + 3).

Conclusion for Part 2

Therefore, the simplified form of sin3thetacos3theta+cos3thetasin3theta\\sin 3\\theta \\cos^3 \\theta + \\cos 3\\theta \\sin^3 \\theta is frac14sin22theta(costhetasintheta)(2sin2theta+3)\\frac{1}{4}\\sin^2 2\\theta (\\cos \\theta - \\sin \\theta)(2\\sin 2\\theta + 3). This problem demonstrates the importance of strategic factorization and the application of trigonometric identities to simplify complex expressions.

These two problems illustrate the beauty and complexity of trigonometric identities. By mastering these identities and practicing algebraic manipulation, we can solve a wide range of trigonometric problems. The key is to break down complex problems into smaller, manageable steps, and to strategically apply the appropriate identities to simplify expressions. Whether it's finding 2cos3theta2\\cos 3\\theta or simplifying sin3thetacos3theta+cos3thetasin3theta\\sin 3\\theta \\cos^3 \\theta + \\cos 3\\theta \\sin^3 \\theta, a solid understanding of trigonometric principles is essential.