Calculating Initial Investment With Simple Interest Solving Trevor's Deposit Puzzle

by ADMIN 84 views

In this article, we'll delve into a fascinating financial puzzle involving Trevor's investment journey. Trevor currently possesses an investment valued at $6,774.50, a sum that has accumulated over 22 years since his initial deposit. This investment has grown steadily, fueled by a simple annual interest rate of 2.7%. Our mission is to unravel the mystery of Trevor's initial deposit, calculating the original amount he invested two decades ago.

Understanding Simple Interest

To embark on this financial quest, we must first grasp the concept of simple interest. Simple interest is a straightforward method of calculating interest, where the interest earned is solely based on the principal amount and the annual interest rate. It contrasts with compound interest, where interest is earned not only on the principal but also on the accumulated interest from previous periods.

The formula for simple interest is as follows:

I = P * r * t

Where:

  • I represents the interest earned
  • P represents the principal amount (the initial deposit)
  • r represents the annual interest rate (expressed as a decimal)
  • t represents the time period in years

In Trevor's case, we know the accumulated value of the investment ($6,774.50), the time period (22 years), and the annual interest rate (2.7%). Our goal is to determine the principal amount (P), the initial deposit that set Trevor's investment journey in motion. We need to rearrange this formula so that it allows us to find the original principal amount.

Deconstructing the Investment: Isolating the Principal

To determine Trevor's initial deposit, we need to deconstruct the accumulated investment value and isolate the principal amount. The accumulated value represents the sum of the initial deposit and the total interest earned over the 22-year period. We can express this relationship mathematically as follows:

Accumulated Value = Principal + Interest

Since we know the accumulated value and the interest rate, we can calculate the interest earned using the simple interest formula. Once we have the interest earned, we can subtract it from the accumulated value to arrive at the principal amount, which represents Trevor's initial deposit.

This is how the Accumulated Value is derived from the simple interest formula:

Accumulated Value = P + I

We know that I = P * r * t, so we can substitute I in the above formula

Accumulated Value = P + (P * r * t)

We can factor P from the right side of the formula

Accumulated Value = P * (1 + r * t)

Now we can easily isolate P, which is the original Principal, with this formula:

P = Accumulated Value / (1 + r * t)

This formula is what we will use to determine the initial deposit. To determine the principal we will use the following steps.

Calculating the Initial Deposit: A Step-by-Step Approach

Now, let's apply our knowledge to calculate Trevor's initial deposit. We will use the formula we derived in the previous section.

  1. Identify the known values:

    • Accumulated Value = $6,774.50
    • Annual Interest Rate (r) = 2.7% = 0.027 (as a decimal)
    • Time Period (t) = 22 years
  2. Substitute the values into the formula:

    P = Accumulated Value / (1 + r * t)

    P = $6,774.50 / (1 + 0.027 * 22)

  3. Perform the calculations:

    P = $6,774.50 / (1 + 0.594)

    P = $6,774.50 / 1.594

    P ≈ $4,250.00

Therefore, Trevor's initial deposit was approximately $4,250.00.

Confirming the Answer and Exploring the Options

Based on our calculations, the initial deposit closest to $4,250.00 is option C. $4,250.00. Let's quickly verify our answer by calculating the interest earned on this initial deposit over 22 years and adding it to the initial deposit.

Interest Earned = P * r * t

Interest Earned = $4,250.00 * 0.027 * 22

Interest Earned = $2,524.50

Accumulated Value = Principal + Interest

Accumulated Value = $4,250.00 + $2,524.50

Accumulated Value = $6,774.50

This confirms that our calculated initial deposit of $4,250.00 is indeed the correct answer.

Now, let's briefly examine the other options to understand why they are not the correct answers:

  • A. $2,524.50: This value is significantly lower than our calculated initial deposit. If Trevor had deposited this amount, the accumulated value after 22 years at a 2.7% simple interest rate would be much lower than $6,774.50.
  • B. $4,024.03: This value is also lower than our calculated initial deposit, although closer than option A. An initial deposit of this amount would not yield the accumulated value of $6,774.50 after 22 years.
  • D. $11,404.88: This value is considerably higher than the accumulated value. It is impossible for an initial deposit of this amount to result in an accumulated value of $6,774.50 after earning simple interest.

Conclusion: The Power of Simple Interest and Financial Calculations

In conclusion, by applying the principles of simple interest and carefully performing the calculations, we have successfully determined that Trevor's initial deposit was approximately $4,250.00. This exercise highlights the importance of understanding financial concepts and using mathematical tools to solve real-world financial puzzles. The correct answer was option C.

Simple interest, while seemingly straightforward, plays a crucial role in various financial scenarios. From understanding loan interest calculations to evaluating investment growth, a solid grasp of simple interest principles empowers individuals to make informed financial decisions.

This example showcases how mathematical concepts can be applied to unravel financial mysteries and gain valuable insights into investment strategies. By mastering these concepts, individuals can confidently navigate the world of finance and make sound decisions to achieve their financial goals.

  • Simple interest
  • Initial deposit
  • Investment
  • Principal
  • Interest rate
  • Time period
  • Accumulated value
  • Financial calculations
  • Financial literacy